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ON THE STOCHASTIC DISSEMINATION
OF FAULTS IN AN ADMISSIBLE NETWORK

by A. Kyrala

1. INTRODUCTION

It is intended to discuss the dynamic distribution of faults in a general
type of network to be defined in the next section which will be desigﬁated as
"admissible." The starting point is a UNIQUELY BRANCHED NETWORK in which each
pair of nodes is connected by a single branch. Later, the extension to
MULTIPLE BRANCHED NETWORKS in which the formerly unique branches are replaced
by two or more branches each will be discussed under the subject of REDUNDANCY
IN NETWORKS Sec. 11.

The basic discrete model used here is the MARKOV CHAIN, although the

extension to a SEMI-MARKOV chain will be discussed later,.

2. NETWORK MODIFICATION

It will be supposed that there exists a discrete clock time universal for
the entire network with a fundamental time interval 1t and that each branch
transit time is an integer multiple of 1. In an arbitrary network, this may
be approximated by inserting additional new (bipolar) nodes into branches with
original transit times larger multiples of 1. If a network (in‘original form)
is such that a signal can be delayed by a multiple of 1 at a node, this delay
is equivalent to a zero delay at the node followed by insertion of an

appropriate number of bipolar nodes into the output branches of the node.




Generally, the actual network to be treated will be unlike the uniquely
branched network, which is the starting configuration to be analyzed, however
the actual network can be obtained from the uniquely branched one by deletion
of branches, node insertions and the addition of redundant parallel branches.

The so modified network will be called an ADMISSIBLE NETWORK.
3. MARKOV CHAIN

The general n-node uniquely branched network (which is not necessarily

two-dimensional) has a (triangular) number of branches given by
A, = n(n-1)/2 (3.1)

Let pjt denote the absolute probability that a signal has reached the jth node
at epoch1 t. Supposing that sufficient bipolar nodes have already been
inserted so that each time interval =t represents a possible transition period

between adjacent nodes, let aijt

denote the conditional probability of transit
from node j tonode i (i.e., through branch j to i) during the time
interval (t,t+t) contingent upon the signal having attained node j at
epoch ¢t.

The post-transition probability of occupancy of node i at epoch (t+1) is
then taken to be the linear homogeneous combination of the pre-transition
probabilities of occupancy given by the following expr'ession2

Pilpary = 3: 35t Pjt (3.2)

for i=1 to n subject to the principle of causality (for each epoch t)




I a = 1 (3.3)
j jit

which sets the direction of time and arranges for the transition matrix to have
columns summing to unity. It is also supposed that the components of each

occupancy vector sum to unity in keeping with its stochastic interpretation.

Multiplication of (3.3) by Pit and subtraction from (3.2) then yields

( ) (3.4)

Pyl (ger) ™ Pyt " %13t Pyt 7 3jit Pit
for i=1 to n giving the change in occupancy probability as a sum of
differences between absolute probabilities of transition into and out of 1.

One notes in passing that (3.4) exhibits the sufficiency of the Principle
of Detailed Balance (with absolute, not conditional probabilities of
transition) to ensure stationarity of the Markov chain characterized by the
vanishing of the left side of (3.4).

A System for which (3.2) and (3.3) hold is called a MARKOV CHAIN and
includes as special cases the Fermi-Dirac and Einstein-Bose statistics, the
Diffusion equation, the Boltzmann transport equation as well as (in complex
generalization) the Schroedinger and Dirac equations of Quantum Mechanics.3

A concrete example of such a Markov chain is afforded by a system which
possesses only two states "operative", designated.by the subscript o or
"inoperative", designated by the subscript 1i. Suppose that the system

undergoes transitions between these states for a very long time. Each

transition is characterized by the chain equations
1% = a p. +ta. P, (3.5)

P, =a, P *a., P (3.6)



and the causality conditions,

350 * 830 = ! (3.7)

a, ta; - 1 (3.8)
as well as the normalization condition

p, +p;, =1 (3.9)

with the + indicating post-transition absolute probabilities and

po = absolute pre-transition probability that system is operative

= " " " " " n 3 3
pi inoperative
aoo = conditional probability that system remains operative after the

transition CONTINGENT upon having been operative before the transition
aoi = conditional probability that system becomes operative after the
transition CONTINGENT upon having been inoperative before the transition
aio = conditional probability that system becomes inoperative after the
transition CONTINGENT upon having been operative before the transition
aii = conditional probability that system remains inoperative after the
transition CONTINGENT upon having been inoperative before the transition

Under stationary conditions (after a great many transitions) the + may

be removed (i.e., no further change in absolute probabilities occurs) so that

P =a _p_+a_. p. (3.10)

Py =a, P *a. P (3.11)




5

Using the causality conditions (3.7), (3.8), one then concludes that detailed
balance holds for the absolute probabilities of transitions between distinct

states. Thus,

a, p =a_, p. (3.12)

Hence,

p/p. =a_,/a, (3.13)

Adding 1 to each side this yields

o
1]

i aio/(aio + aoi) (3.14)

and

o aoi/(aio + aoi) (3.15)

o
[}

The fraction of transitions during which the system is operative is given by

f = No/(No+Ni) = aoi/(aoi + aio) =P, (3.16)

while the expected number of transitions for recurrence of the inoperative
state is given by

N(inop-+ inop) = 1/p, = (a_, + a, )/a (3.17)
i

oi io io
and the expected number of transitions for recurrence of the operative state is
given by

N(op-+ op) = 1/p, = (aoi + aio)/aoi (3.18)



The expected number of transitions for the first passage from inoperative to

operative state is given by

N(inop-+ op) = 1/aoi

(3.19)

based upon the assumption that the contingency of starting inoperative was
actually fulfilled. Similarly, the expected number of transitions for first

passage from operative to inoperative state is given by

N(op-+ inop) = 1/aio (3.20)

based upon the assumption that the contingency of starting in the operative
state was actually fulfilled.
Thus, all of these quantities may be expressed in terms of the conditional

probabilities of transition subject to the assumptions stated.

4, FAILURE-RELATED INTERPRETATION OF TRANSITION MATRICES

For a uniquely branched network each off-diagonal element aijt of the

transition matrix corresponds to the traversal of the j to 1 branch in the
specified direction. If a particular branch is deleted, BOTH terms aijt AND
ajit symmetrically located with respect to the main diagonal must be set equal
to zero. Also, if the branch connecting the ith and jth nodes fails

BIDIRECTIONALLY, the same two terms must be set equal to zero. In a network

with UNIDIRECTIONAL branches (say, j to i) only one of the two symmetrants will
be non null and this must be set equal to zero. It is in this way that the

elements of the transition matrix are related to BRANCH FAILURES.
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It is not difficult to construct matricial operators which remove elements
from a matrix. Let E1i denote a matrix with a unit element at 1i,i on the
main diagonal and zeros for all other entries. Then for a given transition
matrix A, the matrix Eii A Ejj is a matrix in which the element ai. is
unaffected, but all other elements are reduced to null. Hence, A - Eii A Ejj
is a matrix which has identical elements as A except for aij , which is
replaced by zero. This matrix might reasonably be termed a BRANCH ANNIHILATOR.

The diagonal elements aiit are associated with NODAL DELA¥ of éignal at
node i at epoch t. 1If there is no nodal delay this diagonal element is null
at epoch t.

What of the less commonly treated case of NODAL FAILURES? Here it becomes
a question of what constitutes a "nodal failure". A given row of the
transition matrix (except for the diagonal element) is associated with all
INPUTS to the node of the same row number. A given column of the transition
matrix is associated (except for the diagonal element) with all QUTPUTS from
the node of the same column number. If by NODAL FAILURE is meant (1) failure
of all outputs, or (2) failure of all inputs, or (3) failure of all outputs AND
all inputs then all off-diagonal elements of the (1) column, or (2) row, or (3)
column AND row with the same number as the node must be set equal to zero. 1In

a more elaborate definition of nodal failure, subsets of these entities could

be annihilated.
5. VECTOR-MATRICIAL FORMULATION OF THE MARKOV CHAIN

The occupancy probabilities for epoch t may be conceived as components

of a STATE VECTOR pt while those at epoch (t+t1) are the components of a state
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vector and these two state vectors are related by the transition matrix

pt+t

At for epoch ¢t

Proc = A Py (5.1)

All of these occupancy vectors are in the first n-tant since all components of
the (n-dimensional) vectors are non-negative. The vector symmetrically
directed with respect to the n orthogonal axes has a transpose (row.vector)
given by

o= (1,1,1,...1,1) (5.2)

with all components defined to be unity and T denoting transpose. The
normalization of occupancy probabilities then requires that

uT.pt =1 (5.3)

for all epochs t. A state vector of equal likelihood each of whose components
is 1/n may also be constructed. It should be clearly recognized that the
above condition does not ensure that the state vectors retain the same
magnitude after transition as they had before transition. Each transition has
the potentiality of changing both direction and magnitude of the occupancy
state vector pt since according to (5.3), it must terminate on a hyperplane
orthogonal to the state vector of equal likelihood both before and after
transition. The only other restriction is the requirement that the state

vectors lie in the first n-tant where all their components will be
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non-negative. For a large number n of states the "angular separation" 6 of
a particular state vector from the state vector of equal likelihood is easily

estimated to be

- 1/2

® = arcos[( n ¢ pk2 ) ] (5.4)

k

The maximum possible angular separation between a state vector and the equal

likelihood state vector is given by @ = ar‘cos(l/nl/2

).
6. LINEAR MAPPING OF GRID NETWORK

A GRID NETWORK is a network with nodes at all lattice points of a
rectangular lattice with branches vertical or horizontal connecting these
points and no others. The occupancy probabilities for the network nodes are
the components of the STATE VECTOR in the Markov chain model of the system
describing the progress of signal or fault through the network. Therefore, the
state of the system is specified in terms of a one-dimensional array of nodes.
In terms of sequential occupation of nodes in an actual two-dimensional
network, it is more convenient to specify the nodes as a two-dimensional array.
Without specifying the geometrical array of nodes, the sequential occupation of
states in the Markov model will not have a unique relationship to the
occupation of nodes in a given two-dimensional array. This comes about because
there does not exist an a priori unique (mapping) correspondence between arrays
of different dimensionality.

In particular it is necessary to specify the correspondence between a

rectangular grid of nodes at (i,j) with (i=1,2,...m), (j=1,2,...n) and a linear
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array with (k=1,2,...,mn). Some possible ways of constructing such a

correspondence are illustrated in Fig. 1 below:

(a) (b) (e)

Fig. 1 Grid/Linear Array Mappings

The Markov model has no a priori explicit cognizance of the way the
two-dimensional array is formed. Generally, it will be most convenient to
specify the Markovian sequence of states by the (boustrophedon) path of (a),
for which with n columns and m rows the original (one-dim array) Markov

nodal number k is given in terms of the (i,j) mapped nodal coordinate by

k = ni - (-1)Y5 ~(n-1)/72 + (-1 (ne1) /2 (6.1)

for (i=1,2...m) and (j=1,2...n). The inverse mapping yielding (i,j) for a

given value of k is found as follows. The row number 1 1is given by

i = [(k-1)/n] + 1 (6.2)

where [] means "integer part of". Then j 1is given by




1

5= (DYl - k- (m1)/2) + (n+1)/2 (6.3)

In this way (with such a specified path) the nodal occupancy probabilities Py
may be replaced by pij where the location of the node (i,j) is specified in a
two-dimensional gridf If pijt is the a priori absolute probability of
occupancy of the node at (i,j) at epoch t, then one can introduce

uvaijt = conditional probability of transit from (i,j) to (u,v) during‘the time
interval (t,t+1)

The Markov chain equation then becomes

Puv t+r T T uvPije Pij (6.4)
1,J]
with
1 =lz.pijt (6-5)
1,)
for occupancy normalization and
1 =% a,. (6.6)
. u’vuv ijt

as causality principle.

The same equations can be more concisely represented by introducing the

GAUSSIAN (complex) integers defined by

g =1+ j /-1 1Kidm , 1<j<n

]
]

i+ jrv/-1 1<i'<m, 1<j'<n Then one has




= I
g

Pe ter rigt Pt

with occupancy normalization

and causality principle

1 =1 ,a
£ f gt

with all quantities having complex indices.
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(6.7)

(6.8)

' (6.9)

If it is desired to restrict to "nearest neighbor transitions" so that

(i,3) to (i +1,3), (i-1,3), (i,j+1), (i,j-1) are the only transitions from

(i,j) with non-null conditional probabilities of transition one can find these

transitions in terms of the original

considered in terms of k become

(1+1,5): k = n(i+1) + (=115
(i-1,3): K = n(i-1) + (-1
(1,3+1): k = ni - (DI (G+1)

(1,j-1): k = ni - (-Di¢-1)

for the two-dimensional post-transition states indicated.

7. THE DIFFUSION AND PROPAGATION OF FAULTS OR SIGNALS IN A NETWORK

(n-1)/2
(n-1)/2
(n-1)/72

(n-1)72

K sequence.

(-1l (n+1)/2
(-1)i(n+1)/2
(-1 (n+1)/2

(—1)i(n+1)/2

Thus, the transitions

(6.10)
(6.11)
(6.12)

(6.13)

It will now be shown under what conditions it is possible to have a

diffusive or wavelike propagation of successive faults or signals in a
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network. In order to get such a propagation in a Markov model, it is necessary
to impose a SELECTION RULE restricting to transitions between neafest neighbors
and it is important to distinguish between chains obeying (3.2), (3.3) or
(6.6), (6.8). Both are Markov models but the nearest neighbors are different
in each. Propagation in the chain of Section 3 means propagation through a
linear array of states while propagation in the chain of Section 6 means
propagation through a two-dimensionally ordered set of states. Generally, it
is not possible to get a wavelike propagation through the states in either case
without imposing some restrictions on the transition probabilities of the
general Markov chains of either section.

For the case of a transition matrix independent of time the conditions for
wave-like propagation can be readily adduced.
The chain equation (3.2) and the causality principle (3.3) by imposition of the

selection rule5

i - j| > 1 implies 3y * 0 (7.1)
become
Pilee = 2iliey Praqly *agliogpgle + gy oy (7.2)
and
ii ai+j|1 + ai—1|i =1 (7.3)

The selection rule simply excludes transitions except among nearest neighbors.

If h 1is the mean number of states through which a fault propagates during
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transition time 1, one can then define the quantities Di’ wi’ui as follows:

2

2tp; = 0% Caglyy +agly ) (7.4)
= h ( ]y, - aili—1 ) (7.5)
o= Caggly — el ) Cagly ol ) (7108

Using the so defined quantities and (7.3), the restricted chain equation (7.2)

can be written in the form

2
perPig)/T = Dy By lm2pywpy ) /R sy lopy gl )/2h uppy

(pil i

(7.7)
which is a finite approximant of the diffusion equation with drift w and rate

of destruction u (supposing (ai+1li +

))

CTURY FORCF PUPR L VS o

2
atp =D Bx p+w axp - Wwp (7.8)

with diffusion coefficient D. This indicates that with transitions restricted
to nearest neighbors faults may diffuse through the states.
yu may also be replaced by -u provided only that

(a4 * N PRI CIS a;_;|;)- Thus the expression given for u

functions as a fault annihilator or creator.

For the case where

he< (aglyg - agli /Gyl v el (7.9)

the diffusive term will become negligible with respect to the drift term and
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the fault will propagate through the network in a wave-like fashion provided
only that My is zero. The phase velocity is naturally wi.

If the individual states are arranged in a two-dimensional array rather
than the one-dimensional linear array above, a regrouping of conditional
probabilities to give a "diffusive case" or possibly a wave-like case can still
be attained by imposing a selection rule on the transitions. However, it is
most important to realize that in such a development the definition of "nearest

neighbors™" has changed and the analysis must take this into account.

For the case where the transition matrix is a function of time, it is more
convenient to return to the vector-matricial model of Section 5. Put the case
that at some time the state vector from some index on has only null components
(unoccupied states). The question is then posed as to what conditions the
transition matrix must fulfill in order to advance the occupancy state by
contiguous state as the transitions occur. If the index (component number)
from which all previous components are not necessarily zero is q, then the qth
and all later components are taken to be zero. In order that the transition
matrix now accomplish the extension of occupancy to qth component of the state
vector BUT NOT BEYOND it will be sufficient if all elements of the transition
matrix with row numbers greater than q and column numbers less than q be
null, Thus, it is readily grasped that not only is a wave of replacement of
zeros propagating in the state vector but also a wave of zero replacements is
simultaneously occurring in the transition matrix. Hence, it is seen that with
the fulfiliment of these conditions faults can propagate in a wave-like
fashion, even in the case where the transition matrix is time dependent. An
example of such a propagation is given below with the convention that 1 does
not represent the unit but rather any non-null element. Then schematically one

has
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which indicates in a graphic way what is meant by "propagation" through the
transition matrix simultaneous with the propagation through the states of the
state vector. The propagation is that of a partition between null and non-null
states and null and non-null transitions. Fig. 2 then corresponds to the
propagation of nulls in the state vector with pk=0 for k>m-1 and in the

transitions matrix with ajk=0 for j>md>k.
From this it is seen that the transitions must have a very particular type
of time dependence (inhomogeneity) in order for propagation as such td occur.
Regardless of whether it occurs or not, one can form useful estimates of

the concentrative or dispersive effect of each transition by calculating the

expected state and expected standard deviation in states after each transition.

Thus,
<k> =L k Pit (7.10)
k
2 2 2
oy —ik Prt < k> (7.11)

both of which are quite naturally time dependent. From the view point of the
transition matrix to effect a concentration of the occupancies in the state
vector on any particular transition the row vectors which form the transition
matrix must be close to orthogonal to the state vector on which they operate
except in a narrow range of row numbers (in the extreme case 1). On the
contrary, if the transition matrix is to effect an equalization of the
components of the state vector then the row vectors should all have the same

scalar product with the state vector on which they operate. 1In either case

(7.10) and (7.11) describe quantitatively the distribution of occupancy in
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states. Another measure of how uniformly (or non-uniformly) states are
distributed in the state vector is the Entropy defined by -Zpk 1n pk which
takes the value 1In n for the state vector of equal likelihood and the value
0 for the state vector of a system stochastically certain to be in a particular

state.
8. SEMI-MARKOV GENERALIZATION OF MARKOV CHAINS

It has been pointed out in Section 2 that delay of faults and signals
could under certain circumstances be treated by nodal insertions in the context
of a Markov model. This requires delay times which are multiples of a common
(constant) transition time. There is another method which is suited to
continuous stochastically variable delay times. This is the method of Semi-
Markov Chains. They are constructed around an "embedded" Markov Chain which
may be taken to have a time independent transition matrix.

Tau is now taken to be a continuous stochastic transition time and the
following definitions apply:

aij = conditional probability of transition from j to i CONTINGENT upon
the system having been in j (i.e., upon j having been occupied before the
transition).

Fij(r) = conditional probability of transition from j to i 1in a time
interval less than <t CONTINGENT upon the transition from j to 1 having
occurred.

ai(T) = conditional probability of node i Dbeing occupied in time interval
less than 1 CONTINGENT upon a transition from some node to i having

occurred.
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With these definitions we obtain from them the SEMI-MARKOV Chain equation

ai(r) = § Fij(r) aij (8.1)

and the principle of causality

j= ? aij with aij>0 (8.2)

If 1 1is allowed to become infinite then Fij and ai should both become

unity. However,

Fij(m) = 1 implies ai(w) = 1 only if § aij = 1 (8.3)

Hence, the transition matrix must be doubly stochastic. It is parenthetically
noted that since reconfigurations which "restore" the condition of the network
in some sense are being considered, this may very well be appropriate for the

cases at hand. in any case
Fij(O) =0 implies ai(O) =0 (8.4)

so that no instantaneous transitions are allowed.

The (Stieltjes) differential of both sides of (8.1) is then

dai(T) = § a,. dF j(T) (8.5)

and both differentials are clearly non-negative. The normalization consistent

with (8.3) is
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[da; (1) =1 =7 dFij(T) (8.6)
0 o

so that the mean time interval to occupy the ith node (during the transition)

is

1, = J 1 da, (1) (8.7)

and the mean transition time for the j to i (nodal) transition is defined

to be

Tij = [ 1 dFij(T) (8.8)

so that the conclusion

T, =L a,. 1., (8.9)
J

implies that the mean time interval required to occupy node i 1is a weighted
average of the mean transition times into the node which is a consequence of
the double stochasticity of the (embedded) transition matrix. The mean time

interval to occupy all n states of the Semi-Markov chain is given by
<t> = (1/n) I Yy . (8.10)

It should be noted by the reader that the entire formulation of the Semi-
Markov chain is in terms of conditional probabilities. If it were desired to
generalize the chain equations (3.2) involving absolute probabilities of

occupancy one should have
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- =;: Fij(0) a5 pye (8.11)
with a clear understanding of the difference between universal clock time
(epoch) t and stochastic transition time interval 1. The difficulty with
such an extension is that even if the occupancy probabilities are initially
referenced to clock time they become functions of the stochastic transition
times after any transitions introducing numerous new variables into the

problems.

9. STATISTICAL INDEPENDENCE OF STATES

It is a tacit assumption of the Markov chain concept that the states must
be defined so that they can be occupied independently and the same requirement
applies in principle to the semi-Markov chain which contains an embedded Markov
as part of its structure. In the semi-Markov chain the situation is even more
severe Wwith a sparse transition matrix because the consistent calculation of
mean transition times requires that the transition matrix be doubly stochastic.
The models6 of CARE III, SURE, HARP, etc., seem to overlook this fact and are
therefore dealing with state definitions which are NOT INDEPENDENT. Because of
this they should not be referred to as semi-Markov systems. This remark does

not of itself invalidate the calculation of path transit probabilities made in

those systems either in the time domain7 or in the frequency domaing.
10. COMMENTS ON VOTER SYSTEMS
The voter system of n elements yields "agreement" for k failures among

the n elements provided n-k>[n/2] ([] means integer part of). Otherwise

the voter system yields "disagreement". It is a majority rule system.
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The individual voter elements are however subject to malfunction hence the
choice between operative and inoperative for the system as a whole can
occasionally occur without reference to inputf This would be the case of the
"irrational voter" whose choices are entirely random. The probability of

agreement9 on such a random basis is

[n/2]n n-k k

p. = I C_p q - (10.1)
a veo K

where an is the (binomial coefficient) number of combinations of n things
taken k at a time, p is the probability of a YES vote by an individual
element, q 1is the probability of a NO vote by an individual element. Thus

p might be called the "probability of irrational agreement" (e.g., an

a
agreement to go to war when it serves no known national interest). In terms of

the expected number of agreements Na = 1/pa, expected number of YES votes

NY = 1/p and expected number of NO votes NN = 1/q; one has from (10.1).

N, = 1/Cg, c /NSNS (10.2)

The probability of agreement based upon rational factors is undoubtedly
not binomial. Since the elements of the voter system are superficially
identical, it seems they could be reasonably assumed to be equicorrelated
because of their common function but hardly independent. Their common design
could apparently yield a correlative bias in performance. Thus, from the total
expected number of agreements of the voter system should be subtracted the
expected number of irrational agreements given by (10.2) to arrive at the
expected number of rational agreements (i.e., agreements arrived at solely by
mutual consideration of inputs). In future work modeling the correlation

between individual voter elements should be of considerable importance.




23

11. REDUNDANCY IN NETWORKS

The principal device used to increase reliability of networks is BRANCH
REDUNDANCY in which a branch with probability gq of failure by itself is
replaced by n parallel branches with probability of failure qn (on the
assumption that the parallel branches fail independently). From this it can be
readily calculated that the number of branches required to reduce the

probability of the failure of the multi-branched system to 10—m is éimply

n=1[ m/loglo(1/q) ] (11.1)

from which a small table may be constructed with the values of n in the body
of the table and the values of q as vertically arrayed entries and the values

of m as horizontally arrayed entries

.01 3 5 6

.001 2 3 4

Table 3

Branches with a greater probability of failure are also easily calculated from
(11.1).
The calculation of failure probability of parallel multibranches is

accomplished by successive application of the calculation for two branches say
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1 and 2 in parallel. Then the probability of failure of the double branch is
simply q1q2 where the "qQ"s are the probabilities of failure of individual
branches.

At this stage it is easy to determine the effect on the transition matrix
of the uniquely branched network. Corresponding to the branch aij this
conditional probability must be replaced by the probability of the multi-
branch.

The question of NODAL REDUNDANCY would seem to imply replacing a.single
node by n nodes but this cannot be done without simultaneously multiplying
all inputs and outputs for the node which considerably complicates the network.
Apparently the use of a voter system is another way of handling the nodal
redundancy problem. In that case the node complete with its treatment of
inputs is replaced by a "new kind of node" capable of making its own decisions

about how to treat inputs.
12. NON-STATIONARY FAULT ARRIVAL RATE THEORY

In view of the importance of fault arrival rates it seems worthwhile to
attempt to construct a theory to handle this parameter under non-stationary
conditions. As a first approximation this will be based upon two assumptions:
Assumption 1: The ratio R of reconfiguration rate to fault arrival rate u

is a constant.

Assumption 2: The ratio e of the absolute probability of the transition from
operative system state to inoperative system state to the absolute probability
of the transition from inoperative system state to operative system state is a
constant.

Two ways of the system becoming inoperative contingent upon its having

been operative will be recognized. The system may become inoperative due to
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internal malfunction quite independently of fault arrival or it may become
inoperative due to fault arrival. In the latter case it will be reasonable to
expect the effect to be proportional to the fault arrival rate u. The
following definitions apply:

bio u = conditional probability of system becoming inoperative due to fault
arrival contingent upon having been operative

cio = conditional probability of system spontaneously becoming inoperative
contingent upon having been operative

coi = conditional probability of system spontaneously becoming operative
contingent upon having been inoperative

boi Ru = conditional probability of system becoming operative (due to

reconfiguration capability) contingent upon having been inoperative

a. p absolute probability of system becoming operative from inoperative

oi i

pO = " " " " " inoperative from operative

a,
io
The term "astationarity parameter" will be used for e. Only for ¢ = 1

does stationarity obtain. The principle of astationarity

p =€ a_ p, (12.1)

now replaces the stationarity condition. The conditional probabilities of

transition may now be expressed in terms of the definitions above

I bio u+e, (12.2)

34 = Do RU* (12'3)



substituting these into (12.1) yields

(b, u+ec. ) Py = € (boi Ru + Coi) Py

10 10

Solving this for u then yields

u=I(ec_, p. - c. Py )/(bio P,

o1 "1 10

If now an Ansatz such as

t
p, = S dF(t)
(o]
P, = i dr(t)
with
[ ar(t) = 1
(o]

-~ eR Db

oi

p.)
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(12.4)

(12.5)

(12.6)

(12.7)

(12.8)

is used so that the probability of being inoperative initially is taken to be

zero as is the probability of being operative ultimately.

It should be noted

that F(t) is not a distribution function or the occupancy probabilities would

be constrained to be monotonic. In any case the fault arrival rate becomes

t -
€ Coi J dF(t) - o J dF(t)
o) t
u =
© t
b6 J dF(t) - € R bo S dF(t)

(12.9)
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With more special assumptions about the occupancy probabilities other forms of
(12.5) become possible. If it were assumed that the relative probability of

being inoperative to that of being operative became exponentially unlikely with

increasing time (12.5) would become

At

u= Kt/ (bio e - ¢R boi) (12.10)
under the assumptions c, =0 and P, = 171 + e *) ang
P, = e /(1 + ™) 5o that P, /P, = e M and c; = Kt which may be fitted

to data if the coefficients are constant.
Finally some remarks about fault arrival should be made. In hardware
faults don't arrive at failure states, they arrive at devices. 1In software

faults don't arrive at failure states, they arrive at nodes in flow charts.

13. TRANSITION MATRIX CHARACTERIZATION FOR SOFTWARE ERRORS

The principle problem of reliability for software appears to be the
masking of errors concealed in a node of the flow chart which is not invoked
during a particular sequence of runs. The basic requirement is then a way of
comparing the system performance with utilization of this node versus the
system performance in the avoidance of this node. As far as the transition
matrix is concerned, removal of this node is equivalent to removing the row and
column containing the node from the original transition matrix. Then using the
two transition matrices one would calculate the probabilities of attaining the
same end states (final instructions) for each of the matrices. The ratio of

these probabilities would then yield a measure of the potential damage to the

program in terms of relative performance times.
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NOTES

1. The Riordan convention of calling a particular instant in time an epoch to
distinguish it from a time interval will be followed here. See W. Feller:

An Introduction to Probability Theory and its Applications, Vol. I, Wiley, NY,
which also discusses discrete Markov chains.

2. The vertical line in the subscript emphasizes the separation of two

distinct variables in a subscript.

3. A. Kyrala: Selection Rules, Causality and Unitarity in Statistical and
Quantum Physics: Foundations of Physics, Vol. 4, No. 1, March 1974, p. 31-51.
5. The large arrow means "implies™.

6. See Appendix A.

T. A. L. White: Upper and Lower Bounds for Semi-Markov Reliability Models of
Reconfigurable Systems: NASA Contractor Report 172340, April 198Y4.

A. L. White: Synthetic Bounds for Semi-Markov Reliability Models: NASA
Contractor Report 178008.

8. See Appendix B.

9. Considering only YES agreements. There is a similar expression for NO

agreements.
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APPENDIX A

ILLUSTRATION OF TRANSITION MATRIX FOR SURE STATES

Corresponding to the SURE State Diagram shown below

Relabeling the states from pairs of digits (the first being the number of voter
elements corresponding to YES, the second being the number of voter elements
corresponding to NO) to single digits indicated on the diagram one may

construct the transition matrix as follows
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1 2 3 4 5 6 7 8 initial states

1 0 0 00 0 0 0 O
2 a210 0O 0 0 0 0 O
final 3 0 a321 c 0 0 0 O
y 0 auzo 0 0 0 0 O
states 5 0O 0 O 3540 0O 0 O
6 0O 0 0 O a651 0 ©
7 0 0 0 O a750 0 O
8 0O 0 0 0 O O a871

from which it can be readily discerned that the matrix is too sparse to fulfill
the normalizations on rows and columns of the Semi-Markov chain, although the
columns can sum to unity satisfying the causality condition of the Markov chain

in the case where the transition times become constant.
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APPENDIX B

NOTE ON
SEQUENTIAL PATH FAILURE PROBABILITIES
by LAPLACE STIELTJES TRANSFORM

by A. Kyrala

In considering the transmission of signals or faults through a path
consisting of bipolar subsections, it is well known that the output of any
section is the convolution of the input to that section and the system function
for the section. For a linear array of such sections the overall output will

be given by a repeated convolution. For four filters in series one has
x(t)
y3(t) yz(t) y1(t) y(t)

Fig.1l

so that the successive convolutions are

L]
— ct

y3(t) SM(TH) x(t-tu) dru (1)

I
— ct

Y2(t) (13) Y3(t-T3) dr (2)

3 3

i
o

y1(t) 82(12) yz(t-rz) drz (3?

t
(L) = [ s, (x,) y1’*-1 ) dr (u)
)
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which upon successive substitutions yields a four-fold multiple integral

( ﬁ-r,
t-11-12

t'T1'12‘T3

y(t) = si(t1)32(12)33(13)su(1u) x(t-11-12-13-ru) d*t1d12d13d11l

2200 - (6)

Instead of dealing with (6) as an expression from which output can be

calculated one can use the Laplace-Stieltjes transform defined by
® -8t
Y(8) = J e dFY(t) (7
' 0

where FY(t) is the distribution function for y(t). Using a similar notation

for the other elements in Fig. 1 the transformed version of (1), (2), (3), and

(4) become
Y(8) = S1(S) Y1(S) (8)
Y1(s) = Sz(s) Y2(s) (9)
!2(3) = S3(s) Y3(s) (10)
13(8) = SM(S) X(s) (11)

Thus instead of (6) one arrives at the transform of the output simply by

multiplication
y
Y(8) =T S (8) X(8) (12)

k=1 K




In a similar way any number of elements in series can be treated.
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To determine the moments of output (or any intermediate stage), one simply

differentiates (7) with respect to s and then lets s approach zero. Thus

Moy = (-1) P aF, (t) (13)
. |

so that the MacLaurin series for Y(s) is then

Y(s) = £ Y™ (0) s™/nt = £ (-1)%t">sP/n1 (14)

n=0 n=0
In particular

-4

> = [t dFY(t) = - Y'(0) (15)
o : )

is the mean for the output and the standard deviation ¢ is given by

t

2

() - [ro3? (16)

o

It should be clearly understood that the elements sk(t), which are taken

to be system functions in filter theory can in the present stochastic context

be regarded as failure probability densities associated with subsections of the

path.
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